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Abstract The detailed investigation of the dynamic epidemic spreading on homogeneous and heterogeneous networks was carried
out. After the analysis of the basic epidemic models, the susceptible-infected-susceptible (SIS) model on homogenous and heterogeneous
networks is established, and the dynamical evolution of the density of the infected individuals in these two different kinds of networks is
analyzed theoretically. It indicates that heterogeneous networks are easier to propagate for the epidemics and the leading spreading behavior
is dictated by the exponential increasing in the initial outbreaks. Large-scale simulations display that the infection is much faster on hetero-
geneous networks than that on homogeneous ones. It means that the network topology can have a significant effect on the epidemics taking
place on complex networks. Some containment strategies of epidemic outbreaks are presented according to the theoretical analyses and nu-
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merical simulations.
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The accurate modeling of the epidemics is the
first step to understand the impact of the infectious
diseases and develop the effective control strategies.

(1.2] are often

Mathematical analysis and dynamics
used to model the disease propagation. Kermack and
McKendrick firstly published the relevant results and
proposed the famous susceptible-infected-removed
(SIR)'™ model in 1926, and then susceptible-infect-
ed-susceptible (SIS) model was presented in 1932141,
Here individuals always lie in several discrete states,
such as susceptible (S), infective (I) and removed
(R) etc. At the same time every one has the equal
probability to contact with others, i.e. homogeneous
mixing hypothesis. However, many dynamic charac-
teristics "2 are not considered in the classical SIR/
SIS models, such as individual age, social structure,
migration and geographical patch structure. In order
to increase the accuracy and relevance of epidemic
models, we must consider these factors and the con-
nectivity pattern of the network of contacts among in-
dividuals along which the disease can be transmitted.

They may be the critical features in the epidemic

. [s .
spreadmg[ I Recently many studies have observed
that the heterogeneity of the contact network can in-

duce noticeable effects on the spreading behavior and
the deployment of immunization resources.

Many social, biological and technological systems
can be properly studied by the theory of complex net-
works!® %) The small-world "' effect and scale-free

(SF)HH property are recently found to be typical
characteristics in these real-world networks. Especial-
ly for SF networks, its degree distribution is charac-
terized by the power-law behavior P (&) ~ & Tem2
with an exponent 0< a<{1. SF property means that a
large number of vertices have a few links, but statis-
tically exists a few vertices with very large degree,
i.e. the so-called “hubs” or “super-spreaders”. Pas-

], (13.14] observed that whatever the

tor- Satorras et a
spreading rate in SF networks the infection would be
widespread, eventually leading to the absence of any
epidemic threshold below which the infection cannot
initiate a major outbreak. This new scenario may rad-

ically change a lot of drawn results and stimulate

many relevant researches' ") because the epidemic
threshold is fundamental to the classical epidemiolo-

gy. In addition it is of importance to the sexual con-

[10]

9 .
tact network' and Internet'™®! since they appear to

* Supported by National Natural Science Foundation of China (Grant No. 60574036), the Research Fund for the Doctoral Program of Higher Edu-
cation of China (Grant No. 20050055013) and the Program for New Century Excellent Talents in University of China (NCET)
* % To whom correspondence should be addressed. E-mail: xialooking@163. com



Progress in Natural Science Vol.17 No.3 2007 www. tandf. co. uk/journals 359

be scale free. It also implies that sexually transmitted
diseases and computer virus can be more easily dis-
seminated, and it requires us to investigate thorough-
ly their spreading dynamics. To control the epidemic
outbreaks, it is necessary for us to study the dynami-

cal evolution of epidemic spreading. Barthelemey et

al. 22 sudied the dynamical properties of suscepti-

ble-infective (SI) model taking place on complex net-
works and found that the growth of infected individu-
als is governed by an exponential growth with a time-
scale 7 proportional to the ratio between the first and
second moment of the network’s degree distribution,
i.e. 7~ (kY/{k). In this study we extended this
result and focused on the dynamical spreading behav-
ior of SIS epidemic model on complex networks and
found out that Barthelemey’s result is only a special
case of our conclusions.

In the following sections we will describe a de-
tailed investigation of epidemic spreading on homoge-
neous and heterogeneous complex networks. At first
we will introduce the basic theory of epidemic infec-
tion and the traditional threshold theory, successively
the dynamic evolution of SIS epidemic spreading on
homogeneous and heterogeneous networks studied by
the analytical method and computer simulation. At
last we will present some containment strategies to
control the fast epidemic spreading on complex net-
works and give our conclusions.

1 Basic theory of SIR/SIS epidemic spread-
ing

1.1 SIR model

In SIR™ model the whole population is divided
into three classes: susceptible, infective and re-
moved. The susceptible ones do not have the disease
but can catch it if they keep in contact with the infec-
tive ones. The infective ones have caught the disease
and can pass it on. The removed ones have recovered
from the disease and acquired permanent immunity so
that they can never get it or pass it on. The fractions
s, 7 and r of individuals in three states S, I and R are

governed by the following differential equations:
ds _

dt——ﬂis, $=Bis—7i,
4 = 7 (1)

where any susceptible individual has a uniform proba-
bility 8 per unit time to catch the disease, infective
individuals recover and become immune at a {ixed rate

7. In SIR model, we suppose that the total popula-
tion keeps constant, namely, s, i and r must satisfy
the normalization condition s + i + » =1, so we only
consider the first two equations. We can define the

. s(0 . . .
ratio of 4;2 as the basic reproductive number R, i.

e. Ry = S_@l, where p = ‘BZ

density of susceptible nodes. R means that an infect-

and s(0) is the initial

ed one will infect the average number of susceptible
ones during the initial stage. When Ry > 1 the dis-
ease will be epidemic, Ry, < 1 the disease will not
spread in the wide range, so R, = 1 is the critical
threshold of the SIR model. It is shown in Fig.1.
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Fig. 1. Evolution of densities of susceptible, infective and re-

moved ones in SIR model with different Ry. (a) Rg=2.7>1 the

disease is epidemic; (b) Rq=0.9<1 the disease is not epidemic.

1.2 SIS model

However not all diseases can confer the immunity
on their survivors. Some diseases can be cured by
medicine, or unluckily be infected again by a patient.
Tuberculosis and gonorrhea are two much-studied ex-
amplesm . Computer viruses can also fall into this cat-
egory and they can be cured by anti-virus software,
but so far the computer do not have the permanent
virus-checking program to avoid the subsequent at-
tacks from the same kind of virus. Such diseases can
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be described by SIS™) model. SIS™ model assumes
that the individual can exist only in two discrete
states; susceptible and infective. Its dynamics can be
represented by the following differential systems:
ds
de
It is similar to SIR model, s and i can be normalized,

i.e. s + ¢ = 1. Correspondingly, we can define the

basic reproductive number R of SIS model, R, = _;1)—

=— fis + 7i, gf———,@is—}’i. (2)

= ‘g, where p = % When R > 1 the disease is epi-

demic and leads to the endemic state; when R, < 1
the epidemic will disappear in the end, so Ry = 1is
also the threshold of the SIS model. It is demonstrat-
ed in Fig.2.
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Fig. 2. Evolution of densities of susceptible, infective ones in SIS
model with different Ry. (a) Ry =3>1 the disease is epidemic;

(b) Ry=0.5<1 the disease is not epidemic.
2 Epidemic spreading on complex networks

The classic epidemic models display the typical
critical phenomenon and there exists a nontrivial epi-
demic threshold below which the infection will die out
in the end, and above which the infection will be epi-
demic. But these models do not take into account the
effect of the topology of the contact network on the
epidemic spreading. Recently the rapid advances in

complex network theory revamp again the study of

[13—20]

the epidemic spreading law and it seems to be

some remarkable results in this field. For homoge-
neous networks including Erdos and Renyim] (ER)

random network and Watts and Strogatz[m (WS)
small-world network, there still exists a critical
threshold. But it seems that the epidemic thresh-

oldm’m is absent for the scale-free network created

by Barabasi and Albert (BA)m] algorithm. This
striking result for BA network may change radically
many known epidemic conclusions.

The smaller threshold, even the absence of epi-
demic threshold, contributes to a general understand-
ing of epidemic spreading on heterogeneous networks,
but this does not provide a large amount of informa-
tion about the time pattern of the dynamical processes
and how effectively the spreading occurs. It also rais-
es some new questions on how to protect the network
and find the optimal strategies for the deployment of
immunization resources. So it is necessary for us to
investigate the temporal evolution of epidemic out-
breaks on complex networks. In this section we will
focus on the dynamic properties of SIS model on com-
plex networks and find that the epidemic evolution on
SI model®" %! js a special case of the dynamic evolu-
tion of our SIS model.

2.1 Dynamic evolution of SIS model on homoge-
neous networks

ER random graphs and WS small world net-
works have highly peaked degree distribution and
most nodes have approximately the same degree. So
the homogeneous mixing hypothesis[l'” holds for
these two kinds of networks and we can take the
mean-field analysis for SIS model on such these net-
works.

Similarly s(¢) and :(¢) are the densities of sus-
ceptible and infective individuals respectively at time
¢, and they must always satisfy the normal condition:
s(¢)+i(t)=1. So the differential equation (2) is
simplied as

didf" = BRY ()1 = i()] ~vi(e). (3)

The creation item on the right side of Eq. (3) which
is proportional to the spreading rate 8 and the average
degree (&), the density of susceptible individuals
[1-4(¢)] and the density of infected individuals
i(t), denotes the growth rate of infected individuals.
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The decaying item, which is proportional to the cur-
ing rate ¥ and the density of infected individuals
i(z), represents the decreasing rate of infected ones.

We can define A = B/7 to be the effective

spreading rate and A, = & to be the spreading

threshold of homogeneous networks "> "*! . Here we

discuss the solution of Eq. (3) under the super-critical
(A > A¢) and sub-critical (A < A.) case respectively.

(i) A > A;. The solution of Eq. (3) is easily
conquered at this time, denoted as
' t/ty)
i) = igexp(t/ty

, (4)
1+ R%E_Ly[exp(t/r,,) _1]

where 7 = Rk)l——}’ is the time-scale of the infec-

tion growth and 7 is the initial density of infected in-
dividuals. In the initial phase the leading behavior is
dominated by i (¢)=iyexp(z/7y), i.e. an exponen-
tial growth. Especially, if the infected individuals can-
not be cured during the initial stage of the epidemics,
we can set ¥ = 0, and it will reduce to SI model.

ioexp(t/r;,)
1+ iO[exp(t/r;,) -1]

are totally consistent with the result of SI model on
homogeneous networks in Refs. [21,22].

Thus r;{=ﬁ and i(t)=

(i1) A < A,. We can solve Eq. (3) and obtain
i(t)= igexpl (B<k) — 7)¢]
= qgexp(— t/ty), (5)
AA

where the time-scale 7, = 7.
HBG =)
So we can see that the infection will increase
with time and lead to an endemic state when A > A,
while the infection will exponentially die out if A <

Ac. And this result is shown in Fig.3.

Apparently the evolution of infected nodes is
dominated by the initial infection density i, and time-
scale 7y of the exponential behavior. In order to con-
trol the epidemic outbreak, we should take measures
to decrease i, and increase 7. We usually quarantine
the infected nodes to decrease i, and the average
number of contacts (k) to prevent the spread of the
contagious disease. It is also easy to understand why
we try to improve the health-cares to increase the cure
rate ¥ and decrease the infection rate §8 to increase ty
for controlling the epidemic outbreak.
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Fig. 3. Time evolution of SIS epidemic spreading over WS net-
work. (a) A <Ap. From top to bottom A =0.16, 0.14, 0.12,

0.1 respectively; (b) A > A.. From top to bottom A = 0. 24,
0.22, 0.2, 0.18 respectively.

2.2 Dynamic evolution of SIS model on heteroge-
neous networks

The above analyses and discussions are valid for
homogeneous networks. However many real-world

6_
networks[ 8]

are highly heterogeneous and the de-
gree displays the power-law distribution, in which the
degree of vertices is fluctuating greatly and the aver-
age degree is not any more a meaningful characteriza-
tion of the network properties. In order to take this
into account, it is necessary for us to write down the
infection dynamics equation for various i,(z). In SIS
model the equation reads as

d——l’;(tt) = Re(1 -4, (£)]10,(2) - 7i,(2), (6)
where the creation term on the right side of Eq. (6) is
proportional to the spreading rate 8, degree &, the
probability [1—,(¢)] that a vertex with degree & is
not infected and the probability @, (¢) that the neigh-
bor of any node with degree k is infected; the decay-
ing item is proportional to the cured rate ¥ and the
density of infected individuals ,(¢).
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For uncorrelated networks, the probability that ;(;)= Z P(k)i,(¢)

an edge departing from a vertex of degree % arrives at
a vertex of degree £’ is independent of the degree % of
the initial vertex. In this situation, the probability
that each edge of a susceptible one pointing to an in-
fected vertex of degree £’ is proportional to the frac-
tion of edges emanated from those infected vertexes.
Moreover each infected vertex can either be one of the
initial seeds (infected at ¢ = 0) or be infected at z >
0. In the latter case, at least one of the edges of the
infected vertex is pointing to another infected one,
from which the infection has been transmitted. The
term O, is equal for various degree k£ and therefore is
equal to the sum of these two terms, thus we can cal-
culate
2 kPR )iy (0)
0(t) =0,(z) = 0

20 (B = DPR) iy (2) — i (0)]

’ (&) ’
(7)
where (k) denotes the average degree and becomes
the proper normalization factor dictated by the total
number of edges.

Differentiating Eq. (7) the following equation is
acquired ;
’ I d .
21 (& = 1)P(k") g (2)

d _F
dt@(t)— 7 . (8)

Neglecting terms of order O(i%) of Eq.(6) and
simplifying the result, we obtain

di
a0 - new. (9)

Then inserting Eq. (9) into Eq. (8) and we get
400 _ Z (k" = DP) (B - 7)0(1)

dt (k)

_ B - (/s<l-:>y)<k> * Yoy, (10)

Combining Eq. (9) with Eq. (10), and then
conquering them in the case of the uniform initial con-
dition 7, (¢ =0) = i,, we acquire the analytical solu-
tions of Eq. (6)

(i

e'H

1 1
yvesveumCLRSRRl

(11)

Thus the total average infection density is

. B = (k) Lo
~ ’°[ﬂ<k2> IR vrrem L 1,
) (12)

where ty =

B —(B+ 7)Y (k) + 7

Obviously the time-scale of an epidemic outbreak
is related to the second moment of the degree distri-
bution. In the networks with a very heterogeneous
connectivity pattern, (B is very large and ry is very
small, so it indicates a very fast spread of the infec-
tion. For scale-free networks with the degree expo-
nent between 2 and 3, we have (&%) > with the
network size N-—>, thus ry—0. Therefore in un-
correlated scale-free networks we face a virtually in-
stantaneous tise of the epidemic incidence.

Remarks:

(i) In homogeneous networks, such as an ER
random graph with Poisson degree distribution,

where (&%) = (k)*+ (), we can recover the result

. (k)
B gr)? — y() + 7y
_ 1 - (13)
Blk) — 7 + )
For ¥y < 1and {&) > 1, thus
1

Y g -y’ (14)

which coincidently agrees with the result in Section

2.1.

(ii) If the infected individuals cannot be cured
during the initial stage of the epidemics, we can set
7 =0 and obtain

. &)
o BR® = (B+ 7)) + 7
(k)
= s (15)
BU(EDY = (k))
(0= iy (e
(B%) - (&)

which are completely the same as the results of SI
[21,22]

W=D +1], (16)

model on heterogeneous networks

(iii) Again the evolution of infected nodes is also
dominated by the initial infection density i, and time-
scale 7y in the very heterogeneous networks. In order
to control epidemic outbreaks, we should try to de-
crease i, and increase 7. So it is necessary for us to
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lower the initial infection density 7,, cut off the con-
nection with other nodes and improve the cure proba-
bility to contain the epidemic proliferation.

3 Numerical simulation

We have carried out large-scale numerical simula-
tions of SIS model on both homogeneous and hetero-
geneous complex networks to verify the theoretical
predictions made in the previous section. The choice
of the network models was dictated by the request of
generating an uncorrelated network. We select

WS small world model as a representative of ho-

and the heterogeneous net-
2]

mogeneous networks,
works are generated with BA algorithm[1 Simul-
tanously we use an agent-based modeling strategy
where at each time step the SIS dynamics is applied to
each vertex by considering the actual state of the ver-

tex and its neighbors.

Fig.3 shows the time evolution of SIS epidemic
spreading over the WS network under the sub-critical
phase (A < 2,) and super-critical phase (A > 1) re-
spectively. In the simulation the network size N =
10000, rewired probability p = 1.0 and the number
of nearest neighbors K = 6. Obviously, in Fig.3 (a)
the linear behavior in the semi-log scale is taken on

when A < A, = 'é— and the infection will die out

quickly, while in Fig. 3 (b) the infection will in-
crease into a steady state when A > A, i.e. an en-
demic state.

Fig. 4 illustrates the time evolution of SIS epi-
demic spreading on BA network under the cure rate
y=0, 0.0001, 0.001 and 0. 01 respectively and
constant infection rate § =0.001. Fig.5 shows the
time evolution of SIS epidemic spreading on WS net-
work under the same condition as Fig.4.
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Fig. 4. Time evolution of SIS epidemic spreading on BA net-
work. From top to bottom ¥ =0, 0.0001, 0.001 and 0.01.
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Time evolution of SIS epidemic spreading on WS net-

work. From top to bottom ¥ =0, 0.0001, 0.001 and 0.01.

Fig. 6 plots the time evolution of SIS epidemic

spreading

on BA network under various infection

rates 8 = 0.0001, 0.001, 0.01 and constant cure
rate ¥ = 0.001. Fig. 7 shows the time evolution of
SIS epidemic spreading on WS network under the
same condition as Fig. 6. For WS network the

spreading
to say, A
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Time evolution of SIS epidemic spreading on BA net-

work. From top to bottom §=0.01, 0.001 and 0.0001.
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Time evolution of SIS epidemic spreading on WS net-

work. From top to bottom $=0.01, 0.001 and 0.0001.
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From Fig.4 to Fig.7 the running parameters are
the network size N = 10000, the average degree (k)
= 16 for WS (K = 8) and BA (m = 8) network. We
typically average our results for 10 network realiza-
tions and up to 20 SIS dynamics for each network re-
alization. Obviously the infection prevalence is low-
ered with the increase of the cure rate under the same
infection rate. On the contrary the higher the infec-
tion rate, the larger the prevalence will be. To con-
trol the disease propagation, we should improve the
health-cares to enhance the cure rate and reduce the
infection rate.

Fig.8 reports the effect of m on the spreading in
BA model, and m is the number of edges added with
every new node, which largely affects the first and
second moments of BA network. Generally m in-
creases the second moments more quickly than the
first one. So the time-scale of evolution is decreased
with m and the infection will be much faster. Similar
results can be obtained in WS small-world network
and is displayed in Fig.9. In the simulation the net-
work size N = 10000, 8 = 0.001 and ¥ =0.001. All
these simulations agree with the theoretical analysis in
Section 2.1 and Section 2.2. It also indicates that we
should immediately quarantine the infected nodes to
decrease the initial infective density and the number
of connections with susceptible individuals ( K or m )
in the initial outbreaks, especially for the heteroge-
neous networks.

3000 4000 5000 6000
Time step

0 1000 2000

Fig. 8. Effect of m on the time evolution of SIS epidemic spread-
ing in BA network. From bottom to top m =2, 4, 8,16,32,64.

In addition the density of infected individuals un-
der the same condition is larger on BA networks than
that on WS networks at some given time, which is
easily seen in the initial stage at ¢ =400 in Figs.4 and
5, t =500 in Figs.6 and 7 and ¢ = 1000 in Figs. 8
and 9. That is to say, the disease or virus is easier to

be propagated in heterogeneous networks, it will also
lead to larger difficulty for us to control the epidemic
spreading on such these networks at the beginning of
the outbreak, such as computer virus and the sexually
transmitted diseases etc. We should take immediate
measures before these virus or diseases are epidemic.

.-",
i
/
4
.""/
o "
1000 2000 3000 4000 5000 6000
Time step

Fig. 9. Effect of K on the time evolution of SIS epidemic spread-
ing in WS network. From bottom to top K =2, 4,8, 16,32,64.

4 Conclusions

In this study we investigated mainly the dynamic
behavior of SIS epidemic spreading on complex net-
works. And the approximate results can be easily ex-
tended to SIR epidemic model. We found that the
topology of the contact network has an obvious effect
on the epidemic spreading behavior. We have focused
on the temporal behavior of SIS model on complex
networks and it is shown that the leading behavior is
dictated by the exponential increasing in the super-
critical condition. In addition the disease or virus is
more easily infected and the epidemic outbreak is al-
most instantaneous in the heterogeneous networks.
However in the homogeneous networks the disease or
virus will disseminate relatively slowly. It is very im-
portant for the epidemic control and deployment of
immunization resources in the heterogeneous net-
works. So we should immediately take effective con-
tainment strategies to prevent the spreading of dis-
eases in the initial outbreaks.
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